Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 12(3): e8622, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35261738

RESUMEN

Morphometrics are fundamental for the analysis of size and shape in fossils, particularly because soft parts or DNA are rarely preserved and hard parts such as shells are commonly the only source of information. Geometric morphometrics, that is, landmark analysis, is well established for the description of shape but it exhibits a couple of shortcomings resulting from subjective choices during landmarking (number and position of landmarks) and from difficulties in resolving shape at the level of micro-sculpture.With the aid of high-resolution 3D scanning technology and analyses of fractal dimensions, we test whether such shortcomings of linear and landmark morphometrics can be overcome. As a model group, we selected a clade of modern viviparid gastropods from Lake Lugu, with shells that show a high degree of sculptural variation. Linear and landmark analyses were applied to the same shells in order to establish the fractal dimensions. The genetic diversity of the gastropod clade was assessed.The genetic results suggest that the gastropod clade represents a single species. The results of all morphometric methods applied are in line with the genetic results, which is that no specific morphotype could be delimited. Apart from this overall agreement, landmark and fractal dimension analyses do not correspond to each other but represent data sets with different information. Generally, the fractal dimension values quantify the roughness of the shell surface, the resolution of the 3D scans determining the level. In our approach, we captured the micro-sculpture but not the first-order sculptural elements, which explains that fractal dimension and landmark data are not in phase.We can show that analyzing fractal dimensions of gastropod shells opens a window to more detailed information that can be considered in evolutionary and ecological contexts. We propose that using low-resolution 3D scans may successfully substitute landmark analyses because it overcomes the subjective landmarking. Analyses of 3D scans with higher resolution than used in this study will provide surface roughness information at the mineralogical level. We suggest that fractal dimension analyses of a combination of differently resolved 3D models will significantly improve the quality of shell morphometrics.

2.
Zool Stud ; 60: e2, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322168

RESUMEN

Studies of temperature effects on morphology in Spinicaudata have focused on length, with no data on shape. To fill this gap, size and shape variability in response to temperature fluctuations was investigated by rearing the modern spinicaudatan Eulimnadia texana. Two days after hydration, juvenile individuals were separated into four different temperature treatments: 20°C, 23°C, 26°C, and 29°C. Hermaphrodite size and shape were analysed by looking at linear combinations of size variables and using Fourier shape analysis; methods that are also used to describe fossil size and shape for better comparison. Size differences were considerable, with reduced growth at low and high temperatures and accelerated growth at the optimum temperature of 26°C, revealing that the reaction of size to increasing temperature is non-linear. The height of the dorsal margin, which is associated with space for egg production in Eulimnadia texana, accounts for a high amount of size variability in this species and, presumably, in most of the Limnadiidae. Hermaphrodite shapes reared under temperatures of 20°C and 29°C are statistically distinct, while intermediate temperatures yield intermediate shapes. The rate of shape change along temperature is comparatively low between 23°C and 26°C and accelerated at lower and higher temperatures. With increasing temperature, the highest point of the dorsal margin is shifted towards the anterior of the carapace, while it assumes a median position at 20°C. Our result that temperature has strong effects on carapace size and shape implies considerable ecophenotypic variability in Spinicaudata.

3.
Zool Stud ; 59: e33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33273985

RESUMEN

Fossil morphological data are time-averaged and generally reflect an overlap of different sources of carapace variability. To examine whether a proposed relationship between size and population density in fossil spinicaudatans is biologically meaningful, we set up rearing experiments involving two extant species: Eulimnadia texana and Eocyzicus argillaquus. Three and five days after hydration, clam shrimp were transferred into cups of various population densities that ranged between 1 and 15 inds/400 ml. Size and shape were measured 14 and 16 days after hydration, respectively. Every second day, we recorded length and sex of E. texana, which matured faster in lower-density cups. According to our growth model, population density and maximal carapace length follow a logarithmic relationship. At maturity, hermaphrodites yielded similar lengths across all population densities (~4.7 mm at 24°C), independent of age. Hence, clam shrimp can put off reproductive maturity as a response to decreased growth under higher density conditions. Growth rate generally decreases at maturity, but that effect is more pronounced in clam shrimp of high population densities, while low-density adults keep growing. For both species, multivariate analyses reveal that carapace size of low-density individuals is significantly larger than carapace size of higher-density individuals, while size values of intermediate densities cannot be distinguished. Shape distinction is strong in hermaphrodites of E. texana: 39.8% of the density-dependent shape variation is associated with relative umbo height, which is generally higher in individuals of smaller population densities. The H/L ratio, which is often used as a simple shape indicator, does not contribute to the main variation in shape, but it forms one of several ratios significant for 18.3% of the shape variability. In turn, the H/L ratio drives 30% of the shape variation in E. argillaquus. In addition, higher densities triggered shifts in ontogenetic growth trajectories in one third of the individuals, which led to aberrant morphologies. The present rearing experiment shows that some of the morphological variability on fossil bedding planes can be explained by population density. Also, it implies a considerable amount of ecophenotypic variability in Spinicaudata that affects our understanding of fossil taxonomy and palaeoecology.

4.
PLoS One ; 15(6): e0234315, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32516353

RESUMEN

Stable carbon and oxygen isotope ratios of raw pollen sampled from nine abundant tree species growing in natural habitats of central and northern Europe were investigated to understand the intra- and inter-specific variability of pollen-isotope values. All species yielded specific δ13Cpollen and δ18Opollen values and patterns, which can be ascribed to their physiology and habitat preferences. Broad-leaved trees flowering early in the year before leaf proliferation (Alnus glutinosa and Corylus avellana) exhibited on average 2.6‰ lower δ13Cpollen and 3.1‰ lower δ18Opollen values than broad-leaved and coniferous trees flowering during mid and late spring (Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Picea abies, Pinus sylvestris and Quercus robur). Mean species-specific δ13Cpollen values did not change markedly over time, whereas δ18Opollen values of two consecutive years were often statistically distinct. An intra-annual analysis of B. pendula and P. sylvestris pollen revealed increasing δ18Opollen values during the final weeks of pollen development. However, the δ13Cpollen values remained consistent throughout the pollen-maturation process. Detailed intra-individual analysis yielded circumferential and height-dependent variations within carbon and oxygen pollen-isotopes and the sampling position on a tree accounted for differences of up to 3.5‰ for δ13Cpollen and 2.1‰ for δ18Opollen. A comparison of isotope ranges from different geographic settings revealed gradients between maritime and continental as well as between high and low altitudinal study sites. The results of stepwise regression analysis demonstrated, that carbon and oxygen pollen-isotopes also reflect local non-climate environmental conditions. A detailed understanding of isotope patterns and ranges in modern pollen is necessary to enhance the accuracy of palaeoclimate investigations on δ13C and δ18O of fossil pollen. Furthermore, pollen-isotope values are species-specific and the analysis of species growing during different phenophases may be valuable for palaeoweather reconstructions of different seasons.


Asunto(s)
Carbono/metabolismo , Oxígeno/metabolismo , Polen/metabolismo , Betulaceae/crecimiento & desarrollo , Isótopos de Carbono/análisis , Clima , Ecosistema , Fagaceae/crecimiento & desarrollo , Isótopos de Oxígeno/análisis , Pinaceae/crecimiento & desarrollo , Polen/genética , Sapindaceae/crecimiento & desarrollo , Estaciones del Año , Especificidad de la Especie , Árboles/genética , Árboles/crecimiento & desarrollo , Árboles/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(51): 18150-5, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489070

RESUMEN

Increasing global temperature and sea-level rise have led to concern about expansions in the distribution and prevalence of complex-lifecycle parasites (CLPs). Indeed, numerous environmental variables can influence the infectivity and reproductive output of many pathogens. Digenean trematodes are CLPs with intermediate invertebrate and definitive vertebrate hosts. Global warming and sea level rise may affect these hosts to varying degrees, and the effect of increasing temperature on parasite prevalence has proven to be nonlinear and difficult to predict. Projecting the response of parasites to anthropogenic climate change is vital for human health, and a longer term perspective (10(4) y) offered by the subfossil record is necessary to complement the experimental and historical approaches of shorter temporal duration (10(-1) to 10(3) y). We demonstrate, using a high-resolution 9,600-y record of trematode parasite traces in bivalve hosts from the Holocene Pearl River Delta, that prevalence was significantly higher during the earliest stages of sea level rise, significantly lower during the maximum transgression, and statistically indistinguishable in the other stages of sea-level rise and delta progradation. This stratigraphic paleobiological pattern represents the only long-term high-resolution record of pathogen response to global change, is consistent with fossil and recent data from other marine basins, and is instructive regarding the future of disease. We predict an increase in trematode prevalence concurrent with anthropogenic warming and marine transgression, with negative implications for estuarine macrobenthos, marine fisheries, and human health.


Asunto(s)
Bivalvos/parasitología , Cambio Climático , Trematodos/patogenicidad , Animales , Fósiles , Historia Antigua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...